Highly Ordered Metal Nanoribbons

<u>J. M. Duarte</u>^a, J. C. S. Santos^b, D. F. S. Ferreira^c, C. A. B. Silva Jr.^d, J. Del Nero^e

^{ab} Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Pará, Belém, 66075-110, Brasil

^c Departamento de Engenharia Elétrica, Universidade Federal de Santa Catarina, 88040-900, Brazil

^d Faculdade de Física, Universidade Federal do Pará, Ananindeua, 67113-901, Brasil

^e Faculdade de Física, Universidade Federal do Pará, Belém, 66075-110, Brasil

Abstract:

Carbon generates a variety of materials due to its hybridization (sp, sp², sp³) [1]. Since the experimental production of graphene and its applications in nanotechnology, research into carbon allotropes has gained prominence [2]. Among the proposed allotropes, we highlight the planar net- τ network [3], see Figure 1(a), a high-order allotrope with 4-5-6-8-10 carbon rings. Figure 1(b) exhibits the unit cell from planar net- τ network with hydrogenated edges, in which we investigated a possible application in nanotechnology. We optimized the geometry of the unit cell with Density Functional Theory (DFT) methodology based on the Generalized Gradient Approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) and the Single-Zeta Polarized (SZP) basis net in the SIESTA package [4]. We used a convergence criterion of less than 10⁻⁴ for the self-consistent field (SCF), the lowest energy value for a mesh cut of 400 Ry, 10x1x1 k-points and the interatomic residual force is less than 5.10⁻³ eV/Å. Our results exhibit metallic character as show the band structure (BS) crossing the Fermi Level (E- $E_F = 0eV$) and the Density of States (DOS) presents accessible states at E- $E_F=0eV$, see Figure 1(c). Figure 1(d) shows the hybrid (zigzag and armchair) net- τ nanoribbon device and its dimensions. The device shows a dual application for the bias window $(0.0 \text{ V} \le \text{V}_{b} \le 1.0 \text{ V})$: (i) 0.0 V $\le \text{V}_{b} \le 0.4 \text{ V}$ the device behaves like an ohmic resistor and (ii) $V_b > 0.4 V$, the device behaves like a Field Effect Transistor (FET), see Figure 1(e). In Figure 1(f), the best transmission values are between 0.0V and 0.8V, from 0.8V there is a small drop in transmission values in the region between -0.48eV and -0.20eV which corresponds to the Highest Occupied Molecular Orbitals (HOMO) region. At 1.0 V is observed a negative differential resistance (NDR) in the differential conductance (-2.97μS).

Figure 1: (a) Planar Net- τ (b) unit cell (c) DOS and BS (d) nanoribbon (e) current and differential conductance curves versus V (f) 2D and 3D transmittance versus E,V.

References:

1. Kroto, H.W. J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: buckminster fullerene, Nature 318 (1985) 162-163.

2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 306 (2004) 666–669.

3. Wang, X., Feng, Z., Rong, J., Zhang, Y., Zhong, Y., Feng, J., & Zhan, Z. "Planar net-τ: A new high-performance metallic carbon anode material for lithium-ion batteries." Carbon 142 (2019) 438-444.

4. Brandbyge, M., Mozos, J. L., Ordejón, P., Taylor, J., & Stokbro, K. Density-functional method for nonequilibrium electron transport. Physical Review B, 65 (2002) 165401.